G-protein ligands inhibit in vitro reactions of vacuole inheritance
نویسندگان
چکیده
During budding in Saccharomyces cerevisiae, maternal vacuole material is delivered into the growing daughter cell via tubular or vesicular structures. One of the late steps in vacuole inheritance is the fusion in the bud of vesicles derived from the maternal vacuole. This process has been reconstituted in vitro and requires isolated vacuoles, a physiological temperature, cytosolic factors, and ATP (Conradt, B., J. Shaw, T. Vida, S. Emr, and W. Wickner. 1992. J. Cell Biol. 119:1469-1479). We now report a simple and reliable assay to quantify vacuole-to-vacuole fusion in vitro. This assay is based on the maturation and activation of vacuole membrane-bound pro-alkaline phosphatase by vacuolar proteinase A after vacuole-to-vacuole fusion. In vitro fusion allowed maturation of 30 to 60% of pro-alkaline phosphatase. Vacuoles prepared from a mutant defective in vacuole inheritance in vivo (vac2-1) were inactive in this assay. Vacuole fusion in vitro required a vacuole membrane potential. Inhibition by nonhydrolyzable guanosine derivatives, mastoparans, and benzalkonium chloride suggest that GTP-hydrolyzing G proteins may play a key role in the in vitro fusion events.
منابع مشابه
In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae
Vacuole inheritance is temporally coordinated with the cell cycle and is restricted spatially to an axis between the maternal vacuole and the bud. The new bud vacuole is founded by a stream of vacuole-derived membranous vesicles and tubules which are transported from the mother cell into the bud to form the daughter organelle. We now report in vitro formation of vacuole-derived tubules and vesi...
متن کاملDetermination of four biochemically distinct, sequential stages during vacuole inheritance in vitro
Vacuole inheritance in Saccharomyces cerevisiae can be reconstituted in vitro using isolated organelles, cytosol, and ATP. Using the requirements of the reaction and its susceptibility to inhibitors, we have divided the in vitro reaction into four biochemically distinct, sequential subreactions. Stage I requires exposure of vacuoles to solutions of moderate ionic strength. Stage II requires "st...
متن کاملThe GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance.
In the budding yeast Saccharomyces cerevisiae, vacuoles are inherited by the projection of vesicles and tubules from the mother-cell vacuole into the growing daughter cell during the S phase. These vesicles then fuse and form the daughter-cell organelle. We have described previously in vitro reactions of the formation of vacuole-derived segregation structures and of vacuole-vacuole fusion. Homo...
متن کاملOptimum Conditions of Radioligand Receptor Binding Assay of Ligands of Benzodiazepine Receptors
To obtain drugs which are more selective at benzodiazepine (BZD) receptors, design and synthesis of functionally selective ligands for BZD receptors is the current strategy of our pharmaceutical chemistry department. The affinity of newly synthesized ligands is assessed by radioligand receptor binding assays. Based on our previous studies, 2-phenyl-5-oxo-7-methyl-1,3,4-oxadiazolo[a,2,3]-pyrimid...
متن کاملOptimum Conditions of Radioligand Receptor Binding Assay of Ligands of Benzodiazepine Receptors
To obtain drugs which are more selective at benzodiazepine (BZD) receptors, design and synthesis of functionally selective ligands for BZD receptors is the current strategy of our pharmaceutical chemistry department. The affinity of newly synthesized ligands is assessed by radioligand receptor binding assays. Based on our previous studies, 2-phenyl-5-oxo-7-methyl-1,3,4-oxadiazolo[a,2,3]-pyrimid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 126 شماره
صفحات -
تاریخ انتشار 1994